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ABSTRACT 

It is proved that for every infinite dimensional normed space (E, II [[) there is 
a non-trivial linear space topology T on E which is weaker than the norm 
topology and is such that (E, z) admits no non-tri,,ial continuous linear func- 
tionals. If E is a space with a generalized basis or is a C(X) space, it is proved 
that the topology z can be taken to be Hausdorff. 

In this note we investigate the existence of  a non-trivial linear space topology z 

on an infinite-dimensional vector space E such that  (1) (E, z) has no non-trivial 

cont inuous linear functionals,  and (2) z is weaker than some given no rm topology 

on E. Following existing terminology (see [2]), we say that  a linear space topology 

satisfying (1) is nearly exotic; two topologies z 1 and z 2 on a set are orthogonal if 

every non-empty  z l -open set intersects every non-empty  z2-open set. 

In  [2]  Klee proved that  if (E, z) is an infinite-dimensional locally convex space 

and if  z is not  a weak topology,  then there is a non-trivial nearly exotic topology  

for  E which fails to be or thogonal  to z. In [6] we conjectured that  if (E, II 
is an infinite-dimensional normed  space, there is a non-trivial nearly exotic topology  

for  E which is weaker than the no rm topology.  (Clearly such a topology  will fail 

to  be o r thogona l  to the no rm topology.)  We substantiate this conjecture and then 

turn to the more  interesting question o f  the existence o f  a Hausdorff nearly 

exotic topo logy  weaker than a given no rm topology on an infinite-dimensional 

linear space. We show that  every infinite-dimensional normed  space with a 

generalized basis admits  a weaker Hausdor f f  nearly exotic topology.  We also 

show that  every infinite-dimensional C(X) space admits a weaker Hausdor f f  

nearly exotic topology.  

Throughout ,  cony A will denote  the convex hull o f  the set A. The 11 sum of  
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normed spaces (E,, [I ][,) (used in Corollary 1)isthe set (x E 1-LE,: E,I I x, II, < ~ ) ;  

the number in this definition is the norm on the ll sum. 

We thank H. Porta for many valuable discussions, and we thank the referee for 

greatly simplifying the original proofs of Corollaries 1 and 2. 

The first result strengthens Lemma 3.2 of [6]: 

]-,EMMA. Let (E, zl) and (F, z2) be topolooical linear spaces with z 2 Hausdorff 

and nearly exotic, and let T be a continuous linear map of E onto F. Let z be the 

amily of all sets in E of the form T-~(U) with U in z 2. Then z is a nearly exotic 
4 "  

"~topology for E which is weaker than zi; the z-closure of O is T- l (0) ;  (whence) if 

T is 1 -  1, z is Hausdorff. 

PROOF. All the above statements are easily checked. We verify only that z is 

nearly exotic: if U and V are z2-neighborhoods of 0, let x be an arbitrary element 

2 " of E. Since z2 is nearly exotic there are non-negative real numbers { i}i= a with 
n U n ]~i=1 2i = 1 and elements ( i}i=l of U such that T(x) ]~.~=~2iu i. For each i 

choose z~ in T-1(ui). If  z = ]~i"=12izi, then x = z + x - z E cony T- I (U)  + T-1(0) 

c c o n v T - l ( U ) +  T-I(V).  Thus x is in the z-closed convex hull of every z- 

neighborhood of 0, so z is nearly exotic. 

A biorthogonal family for a topological linear space E is a family (x~, f~) with 

x, ~ E, f ,  ~ E*, such that f,(xp) is the Kronecker delta 6, a for each ~ and ft. Also, S 

will denote the space of (equivalence classes of) Lebesgue-measurable functions 

on [0, 1] with the topology of convergence in measure. A metric for this topology 

is defined by 

fo If - o l  d~ ~(f,o) = 1 + If - o [ 

where /~ is Lebesgue measure. It is well known that S is a complete Hausdorff 

nearly exotic space. 

Theorem 3.3 of [6] can be strengthened as follows: 

THEOREM. (a) Every infinite-dimensional normed space (E, II I[) admits a 

weaker non-trivial nearly exotic topology; 

(b) / f  in addition there is a biorthogonal family (x~, f~} for E such that the 

set (f~) is total over E, then (E, II N) admits a weaker Hausdorff nearly exotic 

topology. 

PROOV. (a) Proposition 2.2 of [1] applied to any linearly independent sequence 

in E gives a biorthogonal sequence (wi,f~)~l for E. Let the elements 1, sin nx, 
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n = 1,2,--. cos nx, n = 1,2,.-. of  S be arranged in a sequence {h~}~=l. Define 

T:  E ~ S as follows: 

T(x) = ~ 2 -~ fi(x) h. 

For p =< q we have the estimate 

. _ , f , ( x )  ( ~r £ 2 w._~.__hi, O] < 2_ ~ f~(x) , ~ 
'=, IIJ' ll / = i=p l f, ll ] 

q 
<= z  (2-'ltxll, 

i=p 

the functions h i are bounded by 1. This shows that the series defining T converges 

to an element of S and that T is continuous. Since (wi,fi)i~ 1 is biorthogonal, the 

range of T contains the linear span of the sequence {hi}i~l, which is dense in S; 

hence the range of T is nearly exotic by Theorem 2.4 of [2]. Since S is Hausdorff, 

the Lemma gives the desired conclusion. 

(b) Let {(x~,f~): ~ e A} be a biorthogonal family for E so that the set {f~} is 

total over E. Let {A~: 7 ~ F} be a disjoint family of countably infinite sets whose 

union is A. Let {j~}~=l be an enumeration of the set {f~: e ~A~}, and define 

T : E ~ [L' ~rS by 

(T(x))~ = ~ "-i f~(x)  h 
i=1 Z ~ i, 

where (hi} is defined as in (a) above. The argument in (a) shows that T is con- 

tinuous. I f  H is the linear span of  {hi}i~ 1 in S, the biorthogonality easily implies 

that the range of  T contains the algebraic direct sum ® 2 ~  r H, which is dense in 

I-L ~ rS. Thus the range of T is nearly exotic since I-Iv ~ rS is nearly exotic. 

If  r ( x ) =  0 then (r(x))y = 0 for all 7. The coefficients 

2 - ~ ( x )  

IlJ,'ll 
are easily seen to be the Fourier coefficients of (T(x))~; thusf~(x) = 0 for all 7 and 
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i and hence by our assumption on {f~}, x = 0. Thus T is 1-1 and again the 

Lemma gives the conclusion. 

A set (x~} in a normed space E is a generalized basis for E if there is a cor- 

responding set {f~} in E* so that {(x~,f~)} is a biorthogonal family and {f~} is 

total over E. If, in addition, the closed linear span of {x~} is E, {x~} is a 

Markushevich basis for E. 

Every weakly compactly generated Banach space E has a Markushevich basis 

[3, p. 918]. Hence for such E, if E is infinite-dimensional both E and E* have an 

infinite generalized basis and thus by the Theorem both have a weaker Hausdorff 

nearly exotic topology. Also, it is easy to see that if {E~} is a family of Banach 

spaces each of which has a Markushevich basis, then the ll sum of the spaces E~ 

has a Markushevich basis. 

COROLLARY 1. Every infinite-dimensional AL-space admits a weaker Haus- 

dorff nearly exotic topology. 

PROOF. Let E be an infinite-dimensional AL-space. By a theorem of  Maharam 

[4] E can be written as the l I sum of spaces Ll(vr), where each Ll(vr) has one of 

these two forms: (i) vr is a strictly positive measure on the family of all subsets of 

a finite or countably infinite set; (ii) vr is a positive multiple of the product Lebesgue 

measure on [0, 1] "~, m r a non-zero cardinal number. Thus in either case L~(vr) is 

weakly compactly generated and so has a Markushevich basis. By the preceding 

remarks E has a Markushevich basis; an application of the Theorem completes 

the proof. 

COROLLARY 2. Every infinite-dimensional C(X)space (X compact Hausdorff) 

admits a weaker Hausdorff nearly exotic topology. 

PROOF. Let E = C(X). By the method of proof of Corollary 1, E* has a 

Markushevich basis {x~,f~}; then {f~, x~} is an infinite generalized basis for E**. 

If this generalized basis is used in the theorem we obtain a 1-1 continuous 

inear map T: E** ~ [IrS~, where each S r is S and T has a dense range. Since (in 

this case) T is defined by means of functionals in E*, an examination of the 

construction in the Theorem shows that T is w*-continuous on each norm- 

bounded subset of E**. The unit ball of E is w*-dense in the unit ball of E**, so 

the restriction of T to E has a dense range in I-l~Se. By the theorem, the proof  is 

complete. 



Vol. 10, 1971 NEARLY EXOTIC TOPOLOGIES 401 

RE FERENCES 

1. V. L. Klee, On the borelian and projective types o f  linear subspaces, Math. Scand. 6 (1958), 
189-199. 

2. V. L. Klee, Exotic topologies for linear spaces, Proc. Symposium on General Topology 
and its Relations to Modem Algebra, Prague, 1961, 238-249. 

3. J. Lindenstrauss, Decomposition o f  Banach spaces, Indiana Univ. Math. Jour. 20 (1971), 
917-919. 

4. D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 
108-11 I. 

5. S. Mazur and W. Orlicz, Sur les espaces mdtriqi,es lindaires, Studia Math. 10 (1948), 
184-208. 

6. N. T. Peck, On non locally convex spaces, Math. Ann. 161 (1965), 102-115. 

UNIVERSITY OF ILLINOIS 
URBANA, ILLINOIS 


