NEARLY EXOTIC TOPOLOGIES ON NORMED SPACES

by N. T. PECK

ABSTRACT

It is proved that for every infinite dimensional normed space $(E, \| \|)$ there is a non-trivial linear space topology τ on E which is weaker than the norm topology and is such that (E, τ) admits no non-trivial continuous linear functionals. If E is a space with a generalized basis or is a C(X) space, it is proved that the topology τ can be taken to be Hausdorff.

In this note we investigate the existence of a non-trivial linear space topology τ on an infinite-dimensional vector space E such that (1) (E, τ) has no non-trivial continuous linear functionals, and (2) τ is weaker than some given norm topology on E. Following existing terminology (see [2]), we say that a linear space topology satisfying (1) is *nearly exotic*; two topologies τ_1 and τ_2 on a set are *orthogonal* if every non-empty τ_1 -open set intersects every non-empty τ_2 -open set.

In [2] Klee proved that if (E, τ) is an infinite-dimensional locally convex space and if τ is not a weak topology, then there is a non-trivial nearly exotic topology for *E* which fails to be orthogonal to τ . In [6] we conjectured that if (E, || ||)is an infinite-dimensional normed space, there is a non-trivial nearly exotic topology for *E* which is weaker than the norm topology. (Clearly such a topology will fail to be orthogonal to the norm topology.) We substantiate this conjecture and then turn to the more interesting question of the existence of a *Hausdorff* nearly exotic topology weaker than a given norm topology on an infinite-dimensional linear space. We show that every infinite-dimensional normed space with a generalized basis admits a weaker Hausdorff nearly exotic topology. We also show that every infinite-dimensional C(X) space admits a weaker Hausdorff nearly exotic topology.

Throughout, conv A will denote the convex hull of the set A. The l_1 sum of

Received June 22, 1971 and in revised form August 17, 1971

normed spaces $(E_{\alpha}, \| \|_{\alpha})$ (used in Corollary 1) is the set $\{x \in \prod_{\alpha} E_{\alpha}: \sum_{\alpha} \|x_{\alpha}\|_{\alpha} < \infty\}$; the number in this definition is the norm on the l_1 sum.

We thank H. Porta for many valuable discussions, and we thank the referee for greatly simplifying the original proofs of Corollaries 1 and 2.

The first result strengthens Lemma 3.2 of [6]:

LEMMA. Let (E, τ_1) and (F, τ_2) be topological linear spaces with τ_2 Hausdorff and nearly exotic, and let T be a continuous linear map of E onto F. Let τ be the amily of all sets in E of the form $T^{-1}(U)$ with U in τ_2 . Then τ is a nearly exotic f topology for E which is weaker than τ_1 ; the τ -closure of 0 is $T^{-1}(0)$; (whence) if T is 1-1, τ is Hausdorff.

PROOF. All the above statements are easily checked. We verify only that τ is nearly exotic: if U and V are τ_2 -neighborhoods of 0, let x be an arbitrary element of E. Since τ_2 is nearly exotic there are non-negative real numbers $\{\lambda_i\}_{i=1}^n$ with $\sum_{i=1}^n \lambda_i = 1$ and elements $\{u_i\}_{i=1}^n$ of U such that $T(x) = \sum_{i=1}^n \lambda_i u_i$. For each i choose z_i in $T^{-1}(u_i)$. If $z = \sum_{i=1}^n \lambda_i z_i$, then $x = z + x - z \in \text{conv } T^{-1}(U) + T^{-1}(0)$ $\subset \text{conv } T^{-1}(U) + T^{-1}(V)$. Thus x is in the τ -closed convex hull of every τ neighborhood of 0, so τ is nearly exotic.

A biorthogonal family for a topological linear space E is a family (x_{α}, f_{α}) with $x_{\alpha} \in E, f_{\alpha} \in E^*$, such that $f_{\alpha}(x_{\beta})$ is the Kronecker delta $\delta_{\alpha,\beta}$ for each α and β . Also, S will denote the space of (equivalence classes of) Lebesgue-measurable functions on [0, 1] with the topology of convergence in measure. A metric for this topology is defined by

$$\sigma(f,g) = \int_0^1 \frac{|f-g|}{1+|f-g|} d\mu$$

where μ is Lebesgue measure. It is well known that S is a complete Hausdorff nearly exotic space.

Theorem 3.3 of [6] can be strengthened as follows:

THEOREM. (a) Every infinite-dimensional normed space (E, || ||) admits a weaker non-trivial nearly exotic topology;

(b) If in addition there is a biorthogonal family $\{x_{\alpha}, f_{\alpha}\}$ for E such that the set $\{f_{\alpha}\}$ is total over E, then $(E, \| \|)$ admits a weaker Hausdorff nearly exotic topology.

PROOF. (a) Proposition 2.2 of [1] applied to any linearly independent sequence in E gives a biorthogonal sequence $(w_i, f_i)_{i=1}^{\infty}$ for E. Let the elements 1, sin nx, $n = 1, 2, \dots \cos nx$, $n = 1, 2, \dots$ of S be arranged in a sequence $\{h_i\}_{i=1}^{\infty}$. Define $T: E \to S$ as follows:

$$T(x) = \sum_{i=1}^{\infty} 2^{-i} \frac{f_i(x)}{\|f_i\|} h_i$$

For $p \leq q$ we have the estimate

$$\sigma \left(\sum_{i=p}^{q} 2^{-i} \frac{f_i(x)}{\|f_i\|} h_i, 0\right) \leq \sum_{i=p}^{q} \sigma \left(2^{-i} \frac{f_i(x)}{\|f_i\|} h_i, 0\right)$$
$$\leq \sum_{i=p}^{q} \sigma(2^{-i}\|\|x\|, 0)$$
$$\leq \left(\sum_{i=p}^{q} 2^{-i}\right) \|x\|, \text{ since}$$

the functions h_i are bounded by 1. This shows that the series defining T converges to an element of S and that T is continuous. Since $(w_i, f_i)_{i=1}^{\infty}$ is biorthogonal, the range of T contains the linear span of the sequence $\{h_i\}_{i=1}^{\infty}$, which is dense in S; hence the range of T is nearly exotic by Theorem 2.4 of [2]. Since S is Hausdorff, the Lemma gives the desired conclusion.

(b) Let $\{(x_{\alpha}, f_{\alpha}): \alpha \in A\}$ be a biorthogonal family for E so that the set $\{f_{\alpha}\}$ is total over E. Let $\{A_{\gamma}: \gamma \in \Gamma\}$ be a disjoint family of countably infinite sets whose union is A. Let $\{f_{i}^{\gamma}\}_{i=1}^{\infty}$ be an enumeration of the set $\{f_{\alpha}: \alpha \in A_{\gamma}\}$, and define $T: E \to \prod_{\gamma \in \Gamma} S$ by

$$(T(x))_{\gamma} = \sum_{i=1}^{\infty} 2^{-i} \frac{f_i^{\gamma}(x)}{\left\|f_i^{\gamma}\right\|} h_i,$$

where $\{h_i\}$ is defined as in (a) above. The argument in (a) shows that T is continuous. If H is the linear span of $\{h_i\}_{i=1}^{\infty}$ in S, the biorthogonality easily implies that the range of T contains the algebraic direct sum $\bigoplus \sum_{\gamma \in \Gamma} H$, which is dense in $\prod_{\gamma \in \Gamma} S$. Thus the range of T is nearly exotic since $\prod_{\gamma \in \Gamma} S$ is nearly exotic.

If T(x) = 0 then $(T(x))_{\gamma} = 0$ for all γ . The coefficients

$$\frac{2^{-i}f_i^{\gamma}(x)}{\|f_i^{\gamma}\|}$$

are easily seen to be the Fourier coefficients of $(T(x))_{\gamma}$; thus $f_i^{\gamma}(x) = 0$ for all γ and

i and hence by our assumption on $\{f_{\alpha}\}$, x = 0. Thus T is 1-1 and again the Lemma gives the conclusion.

A set $\{x_{\alpha}\}$ in a normed space *E* is a *generalized basis* for *E* if there is a corresponding set $\{f_{\alpha}\}$ in *E*^{*} so that $\{(x_{\alpha}, f_{\alpha})\}$ is a biorthogonal family and $\{f_{\alpha}\}$ is total over *E*. If, in addition, the closed linear span of $\{x_{\alpha}\}$ is *E*, $\{x_{\alpha}\}$ is a *Markushevich basis* for *E*.

Every weakly compactly generated Banach space E has a Markushevich basis [3, p. 918]. Hence for such E, if E is infinite-dimensional both E and E^* have an infinite generalized basis and thus by the Theorem both have a weaker Hausdorff nearly exotic topology. Also, it is easy to see that if $\{E_{\alpha}\}$ is a family of Banach spaces each of which has a Markushevich basis, then the l_1 sum of the spaces E_{α} has a Markushevich basis.

COROLLARY 1. Every infinite-dimensional AL-space admits a weaker Hausdorff nearly exotic topology.

PROOF. Let *E* be an infinite-dimensional *AL*-space. By a theorem of Maharam [4] *E* can be written as the l_1 sum of spaces $L_1(v_\gamma)$, where each $L_1(v_\gamma)$ has one of these two forms: (i) v_γ is a strictly positive measure on the family of all subsets of a finite or countably infinite set; (ii) v_γ is a positive multiple of the product Lebesgue measure on $[0, 1]^{m_\gamma} m_\gamma a$ non-zero cardinal number. Thus in either case $L_1(v_\gamma)$ is weakly compactly generated and so has a Markushevich basis. By the preceding remarks *E* has a Markushevich basis; an application of the Theorem completes the proof.

COROLLARY 2. Every infinite-dimensional C(X) space (X compact Hausdorff) admits a weaker Hausdorff nearly exotic topology.

PROOF. Let E = C(X). By the method of proof of Corollary 1, E^* has a Markushevich basis $\{x_{\alpha}, f_{\alpha}\}$; then $\{f_{\alpha}, x_{\alpha}\}$ is an infinite generalized basis for E^{**} . If this generalized basis is used in the theorem we obtain a 1-1 continuous inear map $T: E^{**} \to \prod_{\gamma} S_{\gamma}$, where each S_{γ} is S and T has a dense range. Since (in this case) T is defined by means of functionals in E^* , an examination of the construction in the Theorem shows that T is w*-continuous on each normbounded subset of E^{**} . The unit ball of E is w*-dense in the unit ball of E^{**} , so the restriction of T to E has a dense range in $\prod_{\gamma} S_{\gamma}$. By the theorem, the proof is complete.

References

1. V. L. Klee, On the borelian and projective types of linear subspaces, Math. Scand. 6 (1958), 189–199.

2. V. L. Klee, *Exotic topologies for linear spaces*, Proc. Symposium on General Topology and its Relations to Modern Algebra, Prague, 1961, 238-249.

3. J. Lindenstrauss, *Decomposition of Banach spaces*, Indiana Univ. Math. Jour. 20 (1971), 917–919.

4. D. Maharam, On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 108-111.

5. S. Mazur and W. Orlicz, Sur les espaces métriques linéaires, Studia Math. 10 (1948), 184-208.

6. N. T. Peck, On non locally convex spaces, Math. Ann. 161 (1965), 102-115.

UNIVERSITY OF ILLINOIS

Urbana, Illinois